June 05, 2018 Volume 14 Issue 21

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Study shows ceramics can deform like metals if sintered under an electric field

Purdue researchers have observed, for the first time, how ceramics formed under an electric field surprisingly change shape rather than break when compressed at high strain. Pictured: Graduate research assistants Jaehun Cho and Qiang Li. [Credit: Purdue U./Vincent Walter]

 

 

 

 

Purdue University researchers have observed a way that the brittle nature of ceramics can be overcome as they sustain heavy loads, leading to more resilient structures such as aircraft engine blade coatings and dental implants.

While inherently strong, most ceramics tend to fracture suddenly when just slightly strained under a load unless exposed to high temperatures. Structural ceramic components also require high temperatures to form in the first place through a lengthy process called sintering, in which a powdered material coalesces into a solid mass.

These issues are particularly problematic for ceramic coatings of metal engine blades intended to protect metal cores from a range of operational temperatures. A study published in Nature Communications demonstrates for the first time that applying an electric field to the formation of yttria-stabilized zirconia (YSZ), a typical thermal barrier ceramic, makes the material almost as plastic, or easily reshaped, as metal at room temperature. Engineers could also see cracks sooner since they start to slowly form at a moderate temperature as opposed to higher temperatures, giving them time to rescue a structure.

"In the past, when we applied a high load at lower temperatures, a large number of ceramics would fail catastrophically without warning," said Xinghang Zhang, professor of materials engineering. "Now we can see the cracks coming, but the material stays together; this is predictable failure and much safer for the usage of ceramics."

Recent studies have shown that applying an electric field, or "flash," significantly accelerates the sintering process that forms YSZ and other ceramics, and at much lower furnace temperatures than conventional sintering. Flash-sintered ceramics also have very little porosity, which makes them more dense and therefore easier to deform. None have yet tested the ability of flash-sintered ceramics to change shape at room temperature or increasingly higher temperatures.

"YSZ is a very typical thermal barrier coating -- it basically protects a metal core from heat," said Haiyan Wang, Purdue's Basil S. Turner Professor of Engineering. "But it tends to suffer from a lot of fractures when an engine heats up and cools down due to residual stresses."

What allows metals to be fracture-resistant and easy to change shape is the presence of "defects," or dislocations -- extra planes of atoms that shuffle during deformation to make a material simply deform rather than break under a load.

"These dislocations will move under compression or tension, such that the material doesn't fail," said Jaehun Cho, a graduate research assistant in materials engineering.

Ceramics normally don't form dislocations unless deformed at very high temperatures. Flash-sintering them, however, introduces these dislocations and creates a smaller grain size in the resulting material.

"Smaller grains, such as nanocrystalline grains, may slide as the ceramic material deforms, helping it to deform better," Wang said.

Pre-existing dislocations and small grain sizes enabled a flash-sintered YSZ sample thinner than human hair to grow increasingly plastic between room temperature and 600 C when compressed, with cracks starting to slowly spread at 400 C as opposed to conventionally sintered YSZ that requires 800 C and higher to plastically deform.

Improved plasticity means more stability during operation at relatively low temperatures. The sample could also withstand almost as much compression strain as some metals do before cracks started to appear.

"Metals can be compressed to 10 or 20 percent strain, no problem, but ceramics often fracture into pieces if you compress them to less than 2 to 3 percent strain," Zhang said. "We show that flash-sintered ceramics can be compressed to 7 to 10 percent without catastrophic fracture."

Even when the sample did begin to crack, the cracks formed very slowly and did not result in complete collapse as would typically happen with conventional ceramics. The next steps would be using these principles to design even more resilient ceramic materials.

The researchers would not have been able to perform in-situ experiments of a micron-sized ceramic sample without an in-situ nanomechanical testing tool inside a high-resolution scanning electron microscope equipped with a focused iron beam tool at Purdue's Life Science Microscopy Center and an FEI Talos 200X electron microscope facility in Purdue's Materials Engineering facility. Both microscopes were provided by Purdue's Office of the Executive Vice President for Research and Partnerships and the Colleges of Engineering and Science. Purdue is expecting an even higher resolution aberration-corrected microscope that the researchers will soon use for future nanomaterials research.

This Purdue-led research was supported by the Office of Naval Research in collaboration with the University of California-Davis and Rutgers University.

Source: Purdue University

Published June 2018

Rate this article

[Study shows ceramics can deform like metals if sintered under an electric field]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2018 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy